Differential Distribution of the Ca (2+) Regulator Pcp4 in the Branchial Arches Is Regulated by Hoxa2
نویسندگان
چکیده
Branchial arches are externally visible tissue bands in the head region of all vertebrate embryos. Although initially formed from similar components, each arch will give rise to different head and neck structures. In a screen designed to characterize the molecular control of branchial arch identity in mouse, we identified Pcp4 as a second branchial arch-specific molecular signature. We further show that the transcription factor Hoxa2 binds to Pcp4 chromatin and regulates Pcp4 expression in the second arch. Hoxa2 is also sufficient to induce Pcp4 expression in anterior first arch cells, which are Pcp4-negative.
منابع مشابه
Hoxa2 Selectively Enhances Meis Binding to Change a Branchial Arch Ground State
Hox transcription factors (TFs) are essential for vertebrate development, but how these evolutionary conserved proteins function in vivo remains unclear. Because Hox proteins have notoriously low binding specificity, they are believed to bind with cofactors, mainly homeodomain TFs Pbx and Meis, to select their specific targets. We mapped binding of Meis, Pbx, and Hoxa2 in the branchial arches, ...
متن کاملHomeotic transformation of branchial arch identity after Hoxa2 overexpression.
Overexpression of Hoxa2 in the chick first branchial arch leads to a transformation of first arch cartilages, such as Meckel's and the quadrate, into second arch elements, such as the tongue skeleton. These duplicated elements are fused to the original in a similar manner to that seen in the Hoxa2 knockout, where the reverse transformation of second to first arch morphology is observed. This co...
متن کاملDifferent levels of Hoxa2 are required for particular developmental processes
Hoxa2 is required for a variety of developmental processes in the branchial arches and in the hindbrain. We have created a Hoxa2 allele that is about 45% as active in transcription as its wild-type counterpart. This allele, together with the Hoxa2 null and wild-type alleles, allowed the generation of embryos developing in the presence of different levels of Hoxa2 activity. Analysis of these emb...
متن کاملTemporal requirement of Hoxa2 in cranial neural crest skeletal morphogenesis.
Little is known about the spatiotemporal requirement of Hox gene patterning activity in vertebrates. In Hoxa2 mouse mutants, the hyoid skeleton is replaced by a duplicated set of mandibular and middle ear structures. Here, we show that Hoxa2 is selectively required in cranial neural crest cells (NCCs). Moreover, we used a Cre-ERT2 recombinase system to induce a temporally controlled Hoxa2 delet...
متن کاملSATB2 Is a Multifunctional Determinant of Craniofacial Patterning and Osteoblast Differentiation
Vertebrate skeletogenesis involves two processes, skeletal patterning and osteoblast differentiation. Here, we show that Satb2, encoding a nuclear matrix protein, is expressed in branchial arches and in cells of the osteoblast lineage. Satb2-/- mice exhibit both craniofacial abnormalities that resemble those observed in humans carrying a translocation in SATB2 and defects in osteoblast differen...
متن کامل